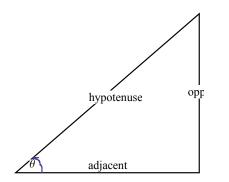
Consider a right triangle with one of its acute angles labeled θ . Let a = length of the side opposite to θ , b = length of the side adjacent to θ , and c = length of the hypotenuse. We can form six ratios with



the lengths of these sides: $\frac{a}{c}$, $\frac{b}{c}$, $\frac{a}{b}$, $\frac{b}{a}$, $\frac{c}{b}$, $\frac{c}{a}$.

Definition 1. Right Triangle Definitions of the Trigonometric Functions:

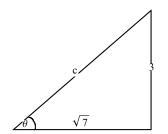
$sin\theta = \frac{opposite}{hypotenuse}$	$csc\theta = \frac{hypotenuse}{opposite}$
$cos\theta = \frac{adjacent}{hypotenuse}$	$sec\theta = rac{hypotenuse}{adjacent}$
$tan\theta = \frac{opposite}{adjacent}$	$cot\theta = \frac{adjacent}{opposite}$

Definition 2. Pythagorean Theorem: The length of the hypotenuse of a right angle triangle is related to the length of the other sides as follows:

$$(opposite)^2 + (adjacent)^2 = (hypotenuse)^2$$

 $a^2 + b^2 = c^2.$

Example 1. Find the values for the six trigonometric functions of the angle θ .



<u>Solution</u>: To find the values for the six trigonometric functions, we must first find the value of c, the length of the hypotenuse.

$$a^2 + b^2 = c^2$$

$$(3)^2 + (\sqrt{7})^2 = c^2$$
$$16 = c^2.$$

Then c = 4. Hence, using the above definition we have,

$$sin\theta = \frac{3}{4} \qquad csc\theta = \frac{4}{3}$$
$$cos\theta = \frac{\sqrt{7}}{4} \qquad sec\theta = \frac{4}{\sqrt{7}}$$
$$tan\theta = \frac{3}{\sqrt{7}} \qquad cot\theta = \frac{\sqrt{7}}{3}$$

Definition 3. Quotient Identities: We can relate the trigonometric functions tangent and cotangent with the sine and cosine:

$$tan\theta = \frac{sin\theta}{cos\theta}$$
 $cot\theta = \frac{cos\theta}{sin\theta}$

Definition 4. Fundamental Identity:

$$\sin^2\theta + \cos^2\theta = 1.$$

Example 2. If a right triangle ABC, with angle C being the right angle, has $cscB = \frac{7}{4}$, then find cosB.

<u>Solution</u>: Since $cscB = \frac{hypotenuse}{opposite}$, then hypotenuse = 7 and opposite = 4. Then use the Pythagorean theorem to find the length of the adjacent side of B.

$$(opposite)^2 + (adjacent)^2 = (hypotenuse)^2$$

 $4^2 + (adjacent)^2 = 7^2.$

Then $adjacent = \sqrt{33}$. Hence, $\cos B = \frac{adjacent}{hypotenuse} = \frac{\sqrt{33}}{7}$.

Definition 5. Trigonometric Function Values of Common Angles:

θ	sin heta		$os \theta$	$tan \theta$	$csc\theta$	sec heta	$cot\theta$
	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$